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1. INTRODUCTION

Having the importance of reducing force transmissibility and decreasing displacement,
viscously damped elastic structures have received considerable attention. Viscous dampers
in the design of vibrating systems such as flexible beams, longitudinal rods and cables are
frequently used. The following are some studies on the viscously damped structures in the
literature.

Considering the flexural vibrating beams, Zarek and Gibbs [1] derived the complex
eigenvalues and mode shapes for a damped beam with general end conditions and
presented some sample results. Oliveto et al. [2] studied the complex mode superposition
method for the dynamic analysis of a simply supported Euler–Bernoulli beam with two
rotational viscous dampers attached at its ends. They stated that an appropriate choice of
the damper constant allows for the maximum reduction of the dynamic response or for an
optimal overall design. Yang and Wu [3] proposed an exact closed-form solution method
for transient analysis of general one-dimensional distributed systems subject to arbitrary
external, initial and boundary disturbances. They demonstrated the method on a
cantilever beam with end mass, viscous damper and spring.

On the other hand, Kovacs [4] studied a taut cable supported with a viscous damper
which has application in the design of bridges and other structures. He used a semi-
empirical interpolation to obtain the maximum modal damping ratio. Pacheco et al. [5]
proposed a universal curve relating the modal damping ratio, the mode number, size and
location of the damper, and the cable parameters consisting of span, mass and
fundamental frequency. They obtained the curve from a numerical complex eigenvalue
analysis and illustrated its use for some example situations to find the value of optimal
external damping constant. In a recent study, Krenk [6] formulated the problem of
damping of a vibrating string by a concentrated viscous damper and solved it by using the
complex valued modes. He obtained an asymptotic approximation of the damping ratio of
the lower modes which yields a simple analytical formula. In addition to these works
related to the cable, Casarella and Laura [7] formulated an analytical expression for the
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viscous drag on a smooth circular cylindrical rodlike cable oscillating with longitudinal
and torsional motion. They presented an approximate value for the drag coefficient based
on a linear damping law. Furthermore, Goeller and Laura [8] analyzed the dynamic
stresses and displacements in a cable subjected to longitudinal excitation simulating ocean-
wave motion. They considered the cable to be made up of two segments of different
materials and physical dimensions. In their analysis, external damping due to fluid action
and internal damping due to viscoelastic material properties were included.

Having a similar equation of motion with that of the cable, the damping of
longitudinally vibrating bars can be studied similarly. Singh et al. [9] investigated a
longitudinally vibrating bar fixed at one end and constrained by a lumped damper with
viscous damping coefficient at the other. They developed a closed-form eigensolution. In a
different study, Hull [10] considered the same problem with an external axial force. He
developed a closed-form series solution for the axial wave equation of this longitudinal
vibrating bar with a fixed boundary at one end and a viscously damped one at the other.
He also showed that the closed-form solution is more computationally efficient than a
finite element solution and the truncation error at lower frequencies is extremely small.
Furthermore, Hizal and G .uurg .ooze [11] presented a study dealing with a longitudinally
vibrating elastic rod fixed at one end and free at the other, damped viscously by a single
damper in-span. They studied the eigencharacteristics of the rod and compared the results
regarding the same system first as continuous and then discrete.

In the present paper, the eigencharacteristics of a longitudinally vibrating rod fixed at
both ends and damped viscously by a single damper in-span are studied. At first, a
continuous model of the rod is considered and the complex eigenfrequencies are presented
as the solution of the complex characteristic equation, and moreover, an asymptotic
solution is derived to obtain a simple explicit formula for calculating the complex
eigenfrequencies and the damping ratio. After that, two different discrete models are
formed for the rod in order to determine its eigenvalues which are compared with the
complex eigenfrequencies of the continuous model. For the sake of completeness, the
studied cases are also considered without damping to see what the effect of a single damper
is on the vibrations of the rod.

2. CONTINUOUS MODEL

The mechanical system to be considered is shown in Figure 1. It consists of a
longitudinal vibrating elastic rod fixed at both ends and damped viscously in-span. The
following expression is the well-known partial differential equation of the rod [12]:

EA
@2uðx; tÞ

@x2
¼ m

@2uðx; tÞ
@t2

; ð1Þ
Figure 1. Longitudinally vibrating elastic rod damped viscously in-span: continuous model.
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where uðx; tÞ denotes the axial displacement at a position x; m denotes the mass per unit
length of the rod and EA denotes the axial stiffness, in which the E is the modulus of
elasticity and A is the cross-sectional area. Dividing the rod into two parts as the left and
the right of attachment point of the damper, u1ðx; tÞ and u2ðx; tÞ represent the axial
displacements of these two sections. These are subject to same differential equation of
motion (1) that must be satisfied over the length of the rod.

The equation of motion is to be solved with the boundary and matching conditions;

u1ð0; tÞ ¼ 0; u2ðL; tÞ ¼ 0;

u1ðZL; tÞ ¼ u2ðZL; tÞ;

u0
1ðZL; tÞ � u0

2ðZL; tÞ þ d

EA

� �
’uu1ðZL; tÞ ¼ 0; ð2Þ

where ZL shows the location of the attachment point of the damper and d denotes the
damping coefficient. Here, primes and dots refer to partial derivatives with respect to the
position coordinate x and time t respectively.

Assuming the axial displacements u1ðx; tÞ and u2ðx; tÞ are separable in space and time in
the form

ujðx; tÞ ¼ UjðxÞelt; j ¼ 1; 2 ð3Þ

in which UjðxÞ and l correspond to unknown amplitude function and characteristic value,
respectively, one can write the differential equation of the eigenvalue problem as

d2UjðxÞ
dx2

� b2UjðxÞ ¼ 0; j ¼ 1; 2; ð4Þ

where

b2 ¼ ml2

EA
: ð5Þ

These differential equations have the general solutions

U1ðxÞ ¼ C1e
bx þ C2e

�bx;

U2ðxÞ ¼ C3e
bx þ C4e

�bx; ð6Þ

where C12C4 are the integration constants to be determined by the boundary and
matching conditions given in equation (2). These boundary and matching conditions in
connection with the assumed solutions in equation (3) lead to the four equations in the
four unknown coefficients C12C4: Writing these as a single-matrix equation and equating
the determinant of the coefficients to zero result in the characteristic equation

2 sinh %bbþ a½cosh %bb� coshð1� 2ZÞ %bb� ¼ 0; ð7Þ

where the notations

%bb ¼ bL; a ¼ dl
EAb

¼ dffiffiffiffiffiffiffiffiffiffiffi
EAm

p ð8Þ

are introduced for simplicity and a can be considered as the dimensionless damping
coefficient.

This characteristic equation is very similar to that of reference [11]. Therefore, it can be
solved to determine the complex frequencies %bb by using the same approach in that
reference. Considering the %bb as a complex number, the equation (7) can be written in the
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form of two real equations after lengthy calculations as

ð2 sinh x þ a cosh xÞcos y � a coshð1� 2ZÞx cosð1� 2ZÞy ¼ 0; ð9Þ

ð2 cosh x þ a sinh xÞsin y � a sinhð1� 2ZÞx sinð1� 2ZÞy ¼ 0; ð10Þ

where x denotes the real part and y denotes the imaginary part of the %bb: These two
equations are to be solved simultaneously.

Besides, an asymptotic solution of the characteristic equation can be obtained by
applying a small perturbation on the solution without damping, similar to the solution
technique in reference [6].

3. ASYMPTOTIC SOLUTION

In this part of the paper, finding an asymptotic solution is the first concern in order to
gain as much insight into the system behavior as possible. Here, the characteristic
parameter %bb is used in the form of complex number. Then, the complex frequencies of the
undamped longitudinally vibrating rod fixed at both ends are

%bb0
n ¼ inp; n ¼ 1; . . . ;1: ð11Þ

Now, one can assume a small perturbation as D51 between the complex frequencies of the
damped and undamped cases

%bbn � %bb0
n ¼ D; n ¼ 1; . . . ;1: ð12Þ

Utilizing this assumption in the characteristic equation given in equation (7) leads to the
following explicit expression for the characteristic parameters %bbn after lengthy calculations

%bbn ffi inp� a sin2 Znp; n ¼ 1; . . . ;1: ð13Þ

The well-known representation of the characteristic value l with the real and imaginary
parts is

l ¼ �zon � i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
on; ð14Þ

where i ¼
ffiffiffiffiffiffiffi
�1

p
and on denotes the undamped natural frequency, and z denotes the

damping ratio that can be evaluated by using the real and imaginary parts of the
characteristic value as [12]

z ¼ jReðlÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jReðlÞj2 þ jImðlÞj2

q : ð15Þ

Hence, in this study, the asymptotic approximation of the damping ratio can be expressed
as

zn ffi a sin2 Znpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnpÞ2 þ ða sin2 ZnpÞ2

q ; n ¼ 1; . . . ;1: ð16Þ

Furthermore, because of its convenience for practical applications in which Z551;
equation (13) takes the form

%bbn ffi inp� aðZnpÞ2; n ¼ 1; . . . ;1 ð17Þ
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and equation (16) leads to

zn ffi anpZ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðanpÞ2Z4

q ; n ¼ 1; . . . ;1 ð18Þ

and takes the final form

zn ffi npaZ2; n ¼ 1; . . . ;1: ð19Þ
A similar expression was given in reference [5] for a taut cable with similar boundary
conditions and a single damper close to support.

Note that neither equation (16) nor (19) gives a peak value for the dimensionless
damping coefficient a: Instead, there is a linear relation between the damping ratio z and
the coefficient a for a given attachment point location of the damper Z: In fact, this result is
expected for small damping coefficients. On the other hand, an optimal value for the
damping ratio for a given damper location can be calculated by solving the two
simultaneous equations numerically, but for large damping coefficients.

4. DISCRETE MODEL

An equivalent discrete model to the original continuous system model which is depicted
in Figure 1 can be obtained by dividing the rod into equal segments as shown in Figure 2.
The new model consists of n equal masses M connected by the springs of equivalent
stiffnesses k and 2k; where k is such that the springs undergo the same elongations as the
corresponding rod segments under identical segments. Furthermore, the system is
viscously damped on the pth mass.

The equation of motion of the discrete model can be written in the form of

M .xxþ C ’xxþ Kx ¼ 0; ð20Þ
where M; C and K denote the mass, damping and stiffness matrices respectively. The mass
and damping matrices are same with those of reference [11]. The only differences are in the
values of the (1, 1) and (n, n)th elements of the stiffness matrix. The values of the elements
are 3 in this study instead of 2 and 1 in that reference.

Now, equation (20) can be transformed to a set of first order differential equations by
using the so-called (2n� 2n) state matrix which is in the same form of that in reference [11].
The eigenvalues of the state matrix are to be determined as complex numbers. Then, one
can make a comparison between the resulting complex numbers multiplied by L=c where c

is the velocity of the wave propagation along the rod and the complex frequencies %bb of the
continuous model.
Figure 2. Longitudinally vibrating elastic rod damped viscously in-span: discrete model: first type.



Figure 3. Longitudinally vibrating elastic rod damped viscously in-span: discrete model: second type.
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On the other hand, one can consider the discrete model as shown in Figure 3 instead of
the model in Figure 2. The difference between these two models is that the springs at the
right and left ends in Figure 2 are stiffer but shorter than the springs at the ends in
Figure 3. In this case, the equation of motion of the new model has the same mass and
damping matrices, the stiffness matrix is the same except the multiplier k takes the
following form

k ¼ ðn þ 1Þ EA

L
; ð21Þ

which is different than that of the first model. Additionally, both the (1, 1) and (n, n)th
elements of the stiffness matrix take the same value 2. Similar to the preceding procedure,
one can transform the equation of motion to a set of first order differential equations by
using the state matrix which is in the same form, solve for the eigenvalues as complex
numbers, and compare with the complex frequencies of the continuous model.

5. NUMERICAL SOLUTIONS

In this section, the numerical solutions of the expression for the continuous and discrete
models are presented. It is assumed that the rod material is aluminum for which the
density is r ¼ 2860 kg/m3 and the modulus of elasticity is E ¼ 7� 1010 N/m2. For the rod
geometry, the values of the cross-sectional area A ¼ 3�14� 10�4 m2 and the length of the
rod L ¼ 1m are used. To complete the numerical values needed, the damping coefficient
d ¼ 100N s/m is also used.

Concerning the undamped case first, Table 1 presents the eigenfrequencies of the
models. The first row contains the analytical solution. The following rows consist of two
columns: One column presents the eigenfrequencies of the discrete model shown in
Figure 2 while the other presents the those of the model in Figure 3, depending on the
number of degrees of freedom n: It can be seen from the values in the table that modelling
the longitudinally vibrating rod as shown in Figure 2 gives a better approximation to the
results of the analytical solution for the eigenfrequencies than the modelling as in Figure 3.
Also, increasing the selected degrees of freedom decreases the approximation error.

In order to see the effect of the single damper in-span on the eigencharacteristics of the
longitudinally vibrating rod, Table 2 presents the complex eigenfrequencies of the damped
case in which the location of the attachment point Z ¼ 0�6 which is used is similar to that in
reference [11]. The first row shows the results of the simultaneous solution of the two real
equations given in equations (9) and (10), derived from the complex characteristic
equation of the continuous model. The other rows present the eigenvalues of the state
matrix. Depending on the number of equal masses in the discrete models shown in Figures
2 and 3, the results are multiplied by L=c in order to compare with the complex



Table 1

First four dimensionless eigenfrequencies of the un-damped rod

o1 o2 o3 o4

3�141593 6�283185 9�424778 12�566371

n Figure 2 Figure 3 Figure 2 Figure 3 Figure 2 Figure 3 Figure 2 Figure 3

1 1�732050 2
2 2�828427 2�449490 4�000000 4�242641
3 3�000000 2�651309 5�196152 4�898979 6�000000 6�400825
4 3�061467 2�763932 5�656854 5�257311 7�391036 7�236068 8�000000 8�506508
5 3�090169 2�835221 5�877852 5�477225 9�510565 7�745966 10�000000 9�486833

10 3�128689 2�985221 6�180339 5�909672 9�079809 8�713819 11�755705 11�340577
50 3�141075 3�110148 6�279051 6�217347 9�410831 9�318647 12�533323 12�411109

100 3�141463 3�125875 6�282151 6�250995 9�421290 9�374602 12�558103 12�495942
500 3�141587 3�138451 6�283143 6�276870 9�424638 9�415228 12�566039 12�553494

1000 3�141591 3�140022 6�283174 6�280036 9�424743 9�420034 12�566287 12�560009
1500 3�141592 3�140545 6�283180 6�281087 9�424762 9�421622 12�566333 12�562147
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eigenfrequencies of the continuous model given in the first row. The results make clear that
the increasing number of discrete masses causes a decreased approximation error as
expected. It is also noticeable that using the model in Figure 2 gives better approximation
than using the model in Figure 3.

Figure 4 presents the real and imaginary parts of the complex eigencharacteristics %bbn for
the certain range of the damped model given in Figure 2. This illustrates the nature of the
convergence with n. In Figure 4(a), it can be seen that the discrete mass approximation
underestimates the real part of the eigencharacteristics for the first and third modes but
overestimates for the second and fourth modes. In Figure 4(b), on the other hand, the
discrete mass approximation underestimates the imaginary parts for all four modes. For
the discrete model depicted in Figure 3, very similar curves can be plotted and shows the
same nature of convergence with n.

On the other hand, the two simultaneous equations given in equations (9) and (10) can
be solved with the help of MATLAB to obtain the exact values for the complex
eigenfrequencies. Using the results, Figure 5 illustrates the dimensionless damping values
with respect to the dimensionless damping coefficients for the given locations Z ¼ 0�05 and
0�02 of attachment point of the damper. Similar curves are given in references [4–6] for a
taut cable with similar end conditions and a single damper close to the support and called
‘‘universal curves’’. It is seen from Figure 5 that increasing the damping coefficient does
not result in a better damping ratio; instead, there is a peak value of the damping, called
the optimal value. The optimal values can also be calculated from the results of the
numerical solution with the help of MATLAB. The exact optimal values are

aZjopt ¼ 0�315; z
Z

����
opt

¼ 0�529 for Z ¼ 0�05;

aZjopt ¼ 0�319; z
Z

����
opt

¼ 0�511 for Z ¼ 0�02:

By analogy with the taut cable problem, these exact optimal values are very close to the
approximate optimal values in the references mentioned above.



Table 2

First four dimensionless eigenfrequencies of the damped rod

%bb1
%bb2

%bb3
%bb4

�0�020349+3�141619i �0�007772+6�283168i �0�007772+9�424794i �0�020349+12�566343i

n Figure 2 Figure 3 Figure 2 Figure 3 Figure 2 Figure 3 Figure 2 Figure 3

1 �0�011248+1�732014i �0�011248+1�414169i

2 �0�011249+1�732014i �0�011249+2�000032i �0�011247+3�999857i �0�011248+3�463974i

3 �0�022497+2�999971i �0�016873+2�296090i �0�000000+5�196152i �0�000000+4�242641i �0�011247+5�999876i �0�016872+5�543128i

4 �0�019203+3�061498i �0�016279+2�472153i �0�011248+5�656798i �0�006218+4�702263i �0�003294+7�391049i �0�006218+6�472153i �0�011246+7�999802i �0�016278+7�608218i

5 �0�022497+3�090161i �0�018748+2�588186i �0�000000+5�877852i �0�000000+5�000000i �0�022498+8�090110i �0�018749+7�071043i �0�000000+9�510565i �0�000000+8�660254i

10 �0�021947+3�128695i �0�020038+2�846301i �0�002148+6�180338i �0�001623+5�634650i �0�017861+9�079823i �0�016923+8�308311i �0�007772+11�755693i �0�005978+10�812809i

50 �0�020746+3�141098i �0�020405+3�079527i �0�006459+6�279040i �0�006112+6�156080i �0�009838+9�410885i �0�010011+9�226856i �0�018419+12�533294i �0�017674+12�288801i

100 �0�020552+3�141488i �0�020386+3�110386i �0�007107+6�282133i �0�006915+6�219959i �0�008794+9�422130i �0�008901+9�328097i �0�019448+12�558075i �0�019074+12�433899i

500 �0�020390+3�141613i �0�020358+3�135343i �0�007638+6�283127i �0�007597+6�270587i �0�007974+9�424655i �0�007999+9�405844i �0�020180+12�566012i �0�020106+12�540932i

1000 �0�020370+3�141618i �0�020354+3�138479i �0�007705+6�283158i �0�007684+6�276882i �0�007873+9�424759i �0�007886+9�415345i �0�020265+12�566260i �0�020229+12�553707i

1500 �0�020363+3�141618i �0�020405+3�139527i �0�007727+6�283164i �0�007701+6�280012i �0�007839+9�424779i �0�007854+9�417654i �0�020293+12�566306i �0�020289+12�557809i
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Figure 4. Convergence of (a) the real parts and (b) the imaginary parts of the eigencharacteristics %bbn with the
degrees of freedom n:
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6. CONCLUSIONS

In this study, continuous and two different discrete models of a longitudinally vibrating
elastic rod fixed at both ends are investigated. The rod is damped viscously by a single
damper in-span. The expressions are derived and solved numerically for the eigenfre-
quencies of the continuous and discrete models. An asymptotic solution is also utilized to
derive a single explicit formula for both the complex frequencies and the damping ratio. In
order to make a comparison for the effect of the damper, the eigenfrequencies of the rod
without damping are obtained similarly by utilizing a continuous and also two different
discrete models. The corresponding numerical results are presented in tables and plots.



Figure 5. Damping ratios for (a) Z ¼ 0�05 and (b) Z ¼ 0�02:
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